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Recognizing Text-Based Traffic Signs
Jack Greenhalgh and Majid Mirmehdi

Abstract—We propose a novel system for the automatic detec-
tion and recognition of text in traffic signs. Scene structure is
used to define search regions within the image, in which traffic
sign candidates are then found. Maximally stable extremal regions
(MSERs) and hue, saturation, and value color thresholding are
used to locate a large number of candidates, which are then
reduced by applying constraints based on temporal and structural
information. A recognition stage interprets the text contained
within detected candidate regions. Individual text characters are
detected as MSERs and are grouped into lines, before being in-
terpreted using optical character recognition (OCR). Recognition
accuracy is vastly improved through the temporal fusion of text
results across consecutive frames. The method is comparatively
evaluated and achieves an overall Fmeasure of 0.87.

Index Terms—Maximally stable extremal region (MSER), scene
structure, text detection, traffic text sign recognition.

I. INTRODUCTION

THE automatic detection and recognition of traffic signs
is a challenging problem, with a number of important

application areas, including advanced driver assistance systems,
road surveying, and autonomous vehicles.

While much research exists on both the automatic detection
and recognition of symbol-based traffic signs, e.g., [1]–[6],
and the recognition of text in real scenes, e.g., [7]–[14], there
is far less research focused specifically on the recognition
of text on traffic information signs [15]–[17]. This could be
partly due to the difficulty of the task caused by problems,
such as illumination and shadows, blurring, occlusion, and sign
deterioration.

Without the use of additional temporal or contextual in-
formation, there is few information to determine traffic signs
from nontraffic signs on the fly, while driving, other than basic
features, such as shape or color. On this basis, the number
of false positives (FPs) likely to occur in a cluttered image,
such as a road scene, is high. This is demonstrated in the
example in Fig. 1, where although the traffic sign present in
both images is successfully detected, more FPs are detected
by the system (in the top scene) when additional structural and
temporal information is not deployed.

We approach this problem by detecting large numbers of
text-based traffic sign candidates using basic shape and color
information. This overdetection is important to ensure that
no true positives (TPs) are missed. We then reduce the large

Manuscript received May 2, 2014; revised August 14, 2014; accepted
September 29, 2014. Date of publication December 8, 2014; date of current
version May 29, 2015. This work was supported in part by the Engineering and
Physical Sciences Council and in part by Jaguar Cars Limited. The Associate
Editor for this paper was B. Morris.

The authors are with the Department of Computer Science, University of
Bristol, BS8 1TR Bristol, U.K.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2014.2363167

Fig. 1. System output showing detection of traffic signs (top) without and
(bottom) with the use of structural and temporal information.

number of detected candidate regions by making use of the
structure of the scene, as well as its temporal information, to
eliminate unlikely candidates.

The proposed system comprises two main stages: detection
and recognition. The detection stage exploits knowledge of the
structure of the scene, i.e., the size and location of the road in
the frame, to determine the regions in the scene that it should
search for traffic text signs. These regions are defined once the
vanishing point (VP) of the scene and, hence, the ground plane
are determined.

Potential candidate regions for traffic signs are then located
only within these scene search regions, using a combination
of MSERs and hue, saturation, and value (HSV) color thresh-
olding. By matching these regions through consecutive frames,
temporal information is used to further eliminate FP detected
regions, based on the motion of regions with respect to the
camera and the structure of the scene.

Once a potential traffic sign has been located, the next stage
of the algorithm attempts to recognize text within the region.
First, an approximate perspective transform is applied to the
region, in order to vertically align text characters. Candidate
components for text characters are then located within the re-
gion and sorted into potential text lines, before being interpreted
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Fig. 2. Pipeline for detection and recognition stages of the proposed approach.

using an off-the-shelf optical character recognition (OCR)
package. To improve the accuracy of recognition, OCR results
from several frames are combined together by matching indi-
vidual words through frames and using a weighted histogram
of results. The entire system pipeline is shown in Fig. 2.

In Section II we review past work and state the improvements
that we make against those that are of most significant rele-
vance. Then, in Section III, we outline the methodology used
for the detection of text-based traffic signs. In Section IV we
describe the methodology used for extracting and interpreting
text from the detected traffic signs. In Section V we present
comparative results to illustrate the performance of the system.
Finally, the conclusion is drawn in Section VI.

II. RELATED WORK

Much research exists on the detection and recognition of text
in natural scenes. Approaches to this problem can be broadly
divided into two groups: region-based methods, e.g., [9], [12],
and [18], and connected component (CC)-based methods, e.g.,
[10], [11], [13], [14], and [19]. Region-based text detection
methods use local features, such as texture, to locate text
regions, whereas CC-based methods attempt to segment text
characters individually by using information such as intensity,
color distribution, and edges. They usually consist of three
phases: a first stage to detect CCs within the image, a second
stage to eliminate unlikely CCs based on their features, and a
final stage that attempts to group the remaining CCs into words
or lines.

More relevant to the context of this paper, the amount of
research focused specifically on the detection of text within
traffic signs is fairly limited, perhaps due to the difficulty of
the task. The existing state-of-the-art methods all consist of two
stages: detection and recognition, e.g., [15]–[17].

Wu et al. [15] found candidate regions, using a combination
of Shi and Tomasi features [20], Gaussian mixture models, and
geometric analysis. The authors assumed that traffic sign text
appeared on a vertical plane with respect to the motion and
optical axis of the camera. However, in reality, it is likely that
text signs will appear from a viewpoint that is not quite fronto-
parallel. Therefore, a perspective transform is necessary to give
OCR a better chance of text recognition, as performed by our
proposed method. Candidate regions were matched through
consecutive frames, and were interpreted using an OCR system
once they were of an adequate size. The authors reported a
detection rate of 88.9% and a false detection rate of 9.2%, based
on a data set of 22 video sequences, each around 30 s long.

Reina et al. [16] segmented regions of interest based on color
information, by applying a threshold to the chrominance and

luminance channels in the Lab color space. Rectangular regions
were found by comparing the fast Fourier transform (FFT)
signature of each blob to the FFT signature of a rectangular-
shaped reference. The four points representing the corners of
the rectangular region were then found by taking the peaks of
the FFT signature; using these points, the regions were rotated
in an attempt to vertically align text characters. This is again an
insufficient approach to deal with the perspective recovery of
the text panel from the vehicle viewpoint, and the perspective
correction in Section IV-A establishes a more robust solution.
No quantitative results were provided by the authors.

The method presented by González et al. made use of
MSERs for the detection of both traffic signs and text characters
[17]. White and blue traffic panels were detected in each frame,
using a combination of color segmentation and bag of visual
words. These regions were then classified using both support
vector machines and Naïve Bayes classifiers. The method was
applied to single images, with no use of temporal information,
and the emphasis placed on the geolocalization of traffic signs
using Global Positioning System information. The height of
the text itself was used to approximate the real-world size, and
hence distance from the camera to the traffic signs. All results
were based on 10 763 images taken from Google Street View.
The authors provided individual detection and recognition rates
for words, numbers, and symbols at short, medium, and long
distances. These rates ranged between 13.09% and 90.18% for
detection and between 8.51% and 87.50% for recognition.

The methods in [15]–[17] suffer from several limitations,
which are improved upon by our proposed method, where
assumptions made for the detection of text-based traffic signs
are general enough to ensure a high recall rate. Our proposed
method uses structural and temporal information to eliminate
the additional FPs. Results are provided in Section V-A to vali-
date this claim. In addition, our method offers improvements on
the raw OCR approach, which was used in works such as [15],
by using perspective recovery and temporal fusion methods.
The performance of this approach is validated in Section V-B.

While use of temporal information in the context of symbol-
based traffic sign detection has been explored before [21], the
work described in this paper expands on the idea, by also
incorporating structural information from the scene.

Other example works that have considered text detection
with a mobile sensor are those that rely on wearable devices,
e.g., Goto and Tanaka [22] and Merino-Gracia et al. [19], and
those applied to mobile robotics in [23]–[25].

Several data sets have been proposed for the validation of
traffic sign recognition systems, including the German traffic
sign detection benchmark [26], the German traffic sign recog-
nition benchmark [27], and the Belgian traffic sign data set
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Fig. 3. Illustration of search regions projected into the 2-D image.

[28]. It should be noted that the focus of these data sets is
on the detection of symbol-based traffic signs, and they are
therefore not applicable to the validation of our method, which
focuses on text. The traffic text sign data that we used were
obtained from Jaguar Land Rover Research, and these are
available to other researchers at http://www.bris.ac.uk/vi-lab/
projects/roadsign/index.html. These data were captured with a
camera, for which the full calibration parameters are known.

III. DETECTION OF TEXT-BASED TRAFFIC SIGNS

The first stage of the proposed system detects candidates
for text-based traffic signs. This consists of three phases: de-
termination of search regions (regions of interest where the
text sign is expected to be found), detection of all possible
candidates within these regions, and reduction of candidates
using contextual constraints.

Search regions of interest for traffic signs are found within
the image, by first locating the sides of the road in the image
and then defining 3-D search boxes, which are projected back
onto the original 2-D frame. These search regions are shown in
Fig. 3, where the orange region is for traffic signs on either side
of the road, and the blue box is for overhead gantries.

A. Finding Sides of Road and VP

In order to determine search regions for traffic signs in each
frame, the sides of the road and the road VP must be detected.
Our approach to VP detection is traditional and popularly used
in other works, e.g., [29]. First, the Canny edge detector is
used to detect edges in the image, which is followed by the
Hough transform to locate straight lines. The total number of
Hough lines is then reduced by eliminating lines that are too
short, that do not approximately pass through the center of the
frame, or (for the purposes of our application) that appear near
the top of the image; an example frame is shown in Fig. 5.
An “accumulator” of line intersections is then created from the
intersections between the remaining Hough lines, the peak of
which is taken to be the VP of the road. The parameters for
Canny and Hough were determined empirically on a subset of
our data set and fixed throughout our experiments.

Once the VP is found, the camera yaw γ and pitch θ can be
computed as

γ = tan−1

(
Cx − V Px

f

)
(1)

θ = tan−1

(
Cy − V Py

f

)
(2)

where f is the camera focal length, and C is the camera’s center
of projection. Using γ and θ, an inverse perspective mapping
(IPM) can be performed on both the original frame and the
detected Hough lines using
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)
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where u and v represent coordinates in the original frame, m
and n are the dimensions of the original frame, αu and αv are
the angular aperture, and x and z represent the coordinates in
the IPM image. The values h, l, and d represent the position
of the camera with respect to the ground plane, as shown in
Fig. 4. These values can be estimated and adjusted, in order to
shift and scale the IPM image.

From the reduced set of Hough lines, it is possible to approx-
imate the sides of the road in the IPM image. If we assume that
the camera is located on the center of the vehicle facing forward
and that the vehicle is in the middle of the lane, it follows that
the center of the current lane will be in the center of the IPM
image. An example of the IPM image and transformed Hough
lines is shown in Fig. 5.

The set of IPM Hough lines are then further reduced by
eliminating lines that are not approximately vertical and lines
that are below a certain length. This set of lines is then divided
into two groups, for the left- and right-hand sides of the image.
The mean of all lines, weighted by line length, is then calculated
for each side of the image. These average lines are taken as
approximations of the sides of the road. Estimates for the VP
and sides of the road are detected in every frame, and they are
then tracked throughout subsequent frames using the Kalman
filter, following the work in [29].

B. Defining Search Regions Within the Original Frame

Once the sides of the road are detected, the size and location
of the search regions can be defined. Three search regions are
used, i.e., one to the left-hand side of the road, one to the right,
and one above. The dimensions of these regions are determined
empirically through analysis of the validation data set and kept
constant throughout our experiments. The top search region is
defined to be the width of the road, given that overhead gantries,
which appear in this region, never extend beyond the sides
of the road. Therefore, the width of this region is determined
dynamically based on the detected positions for the sides of
the road. The dimensions and height of the roadside regions
are fixed, but their horizontal positions change dynamically to
position them by either side of the road.
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Fig. 4. Camera position and captured frame.

Fig. 5. Output of various stages of algorithm to define search regions.

The real-world dimensions of these regions can be roughly
estimated, by assuming that the distance between the overhead
gantry and the ground is approximately 5.1 m, i.e., the mini-
mum legal unmarked gantry height in the U.K., and using this
as a reference. These dimensions are stated in Table I.

These 3-D regions are then projected back into the original
2-D frame, as shown in Fig. 5, with the search regions for signs

TABLE I
DIMENSIONS OF SEARCH REGIONS

TABLE II
VALUES USED FOR HSV THRESHOLDING

by the sides of the road in orange and the search region for
overhead gantries in blue.

C. Detection of Text Traffic Sign Candidates

The next stage of the algorithm involves the detection of
candidates for text-based traffic signs within our defined scene
search regions. We follow from our previous work on the
detection of symbol-based traffic signs [4] and detect text traffic
sign candidates using both MSER and HSV color thresholding.
These two kinds of region detector are used, in order to gain as
high a recall as possible and ensure that all possible traffic signs
are detected in all conditions.

MSERs are defined to be regions that maintain their shape
approximately through several image threshold levels. This
region detector is robust to lighting and contrast variations
and detects high-contrast regions, which make it suitable for
the detection of traffic signs. An example frame with detected
MSERs is shown in Fig. 6.

Additional traffic text sign candidates are detected using
HSV thresholding. Each frame is first transformed into the
HSV color space, before a threshold is applied to both hue and
saturation channels. The value channel is ignored to help the
system remain invariant to changes in brightness. Threshold
values are determined using the template images provided in
the U.K. Department of Transport Traffic Sign Manual [30].
These values are provided in Table II and are also illustrated in
Fig. 7, for green, blue, and brown traffic signs. They remain the
same for all our experiments. Two sets of CCs are thus found by
HSV thresholding to detect candidate regions for blue and green
traffic signs. Example candidate regions are shown in Fig. 6.

D. Reduction of Candidate Regions Based on
Contextual Constraints

Next, we reduce the total number of candidates, by using
both temporal and contextual information. Assuming that the
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Fig. 6. Examples of MSERs and HSV-thresholded regions.

Fig. 7. Hue against saturation, with values for color traffic signs marked.

vehicle is moving forward and that the traffic sign appears
within the defined search regions, we can expect the motion of
tracked regions within the frame to be as illustrated by the green
arrows in Fig. 8. Temporal information about candidate regions
is then easily gained by matching each candidate between
frames using its size, aspect ratio, and location features. It is
assumed that between consecutive frames, the Euclidean dis-

Fig. 8. Motion of traffic sign with respect to camera.

tance between matching regions will remain small, despite their
temporal motion within the frame. Based on this assumption,
each traffic sign candidate from the current frame is compared
with each candidate from the previous frame. A match is made
between the regions with the smallest Euclidean distance, given
that this distance is below a defined threshold and that their
aspect ratios are suitably similar. If no match is found, the
detected candidate is treated as a new traffic sign.

For a pinhole camera model, it is given that candidates
will grow in size through consecutive frames. This is shown
in Fig. 9, where C represents the camera center, T1 and T2

represent a traffic sign at different distances with respect to the
camera, and T ′

1 and T ′
2 represent the 2-D projection of T1 and
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Fig. 9. Pinhole camera model representing motion of traffic sign with respect
to the camera.

T2 on the image plane. As the camera moves forward, the traffic
sign in its view will move away from the VP in the image plane
and increase in size. Any tracked candidates that violate these
conditions are assumed to be FPs and are rejected.

The constraints applied to the region size vary based on the
location of the region within the frame. The maximum and min-
imum values for region width and height increase, the further
the region is from the VP. Overhead gantries tend to be far
wider than traffic signs found by the side of the road; therefore,
the maximum and minimum values for aspect ratio and width
depend on which search region the traffic sign is detected in.
The maximum sizes of candidate traffic signs are represented
by the size of the 3-D search boxes, where the maximum size of
roadside candidates depends on their horizontal distance from
the VP, and the maximum size of gantry candidates depends on
their vertical distance from the VP.

IV. RECOGNITION OF TEXT

The second stage of the system recognizes text contained
within the detected candidate regions. To increase the chances
of OCR in recognizing our noisy text regions, we first apply an
approximate perspective transform to the rectangular candidate
regions to vertically align them and their text characters. Indi-
vidual text characters are then segmented, formed into words,
and then sent to OCR. Results from several instances of each
traffic sign are then combined, in order to further improve
recognition. These steps are detailed next.

A. Correction of Detected Candidate Regions

Before text is read from the detected region, an approximate
perspective transform is applied to vertically align the text
characters and reduce perspective distortion. The correction is
performed by first fitting a quadrilateral to the CC representing
the traffic sign; example traffic sign shapes are shown in Fig. 10.
The method is required to be robust to noisy rectangular candi-
dates, such as those in Fig. 11.

First, the CC is filtered down to just the points representing
edge pixels, and the well-known random sampling consensus
(RANSAC) algorithm is then applied to estimate parameters for
lines representing the top and bottom edges [31]. It is assumed

Fig. 10. Example traffic sign shapes.

Fig. 11. Example noisy traffic sign candidates shown with their corresponding
HSV threshold CCs.

Fig. 12. Stages of quadrilateral detection, showing (top left) original CC, (top
center) edge image, (top right) fitted horizontal line, (bottom left) fitted vertical
lines, (bottom center) corrected vertical lines, and (bottom right) detected
quadrilateral.

that either the left or right side of the CC can be approximately
fitted to a single straight line, if not both sides. RANSAC is
again applied to fit a straight line to both the leftmost pixels and
rightmost pixels, ignoring any points associated with the fitted
top and bottom lines.

The line that best fits its edge pixels is then selected, and
the other is rejected and replaced with a line of equal gradient,
intersecting the outer most pixel. For example, in the bottom
left image in Fig. 12, the right-hand side would be selected and
the other rejected.

The left and right sides of the quadrilateral representing the
candidate are assumed to be parallel, as rotation around the
x-axis is minimal. The quadrilateral representing the region is
then found from the points at which these four lines intersect.
Each stage of this method is shown in Fig. 12.

A homography H can be calculated from this set of points
(x) and a set of points representing a regular rectangle x′ (see
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Fig. 13. Approximate perspective transform using homography H.

Fig. 14. Example detected regions with quadrilaterals and resulting corrected
regions.

Fig. 13) [32]. The dimensions of the corrected rectangle x′ are
defined as

w′ = max {|P1 − P2|, |P4 − P3|} (5)

h′ = max {|P1 − P4|, |P2 − P3|} (6)

where w′ and h′ represent the width and height of the corrected
region, and P1, P2, P3, and P4 are points that represent the
corners of the detected quadrilateral.

Perspective mapping can now be performed using homogra-
phy H, which will cause text characters to be vertically aligned.
Example results of this transformation are shown in Fig. 14.

B. Detection of Text Lines

The next stage of the algorithm locates lines of text within
the detected candidate regions. This allows the total number of
CCs to be reduced, removing noncharacter CCs and hence im-
proving the chances for higher OCR accuracy. Text characters
are first located as MSERs within the region, which are then
reduced based on thresholds applied to features of the candidate
characters and their bounding boxes (BBs). These thresholds
were determined empirically based on a validation data set,
and these are recorded in Table III. All remaining character
regions are then grouped into text lines. As the region has been
transformed with the approximate perspective transform, the
text lines are assumed to be vertically aligned.

Each character is compared with other characters and labeled
based on simple perceptual similarity rules, i.e., similarity of

TABLE III
CHARACTER FEATURES

Fig. 15. Stages of line detection, showing (top) detected MSERs and (bottom)
detected text lines.

Fig. 16. Line detection in two passes, showing (top) detected text line after
first pass and (bottom) detected text line after second pass.

component heights, vertical distance, horizontal distance, and
ratio of component areas. Fig. 15 shows the detected MSER
components and initially detected text lines.

Once text lines are detected, a second pass removes unlikely
characters from each line. This stage is necessary because
symbols and other noncharacter components can get grouped
with text characters, causing OCR errors. For each text line,
the median character height is found and then used to define
a stricter set of size constraints. For example, as shown in
Fig. 16, the “arrow” symbol has been incorrectly grouped as
a text character in the first pass but is then removed in the
second pass.

C. OCR for Individual Candidates

The set of detected text lines (in grayscale) are passed on
to the open-source OCR engine “Tesseract” [33] for recogni-
tion. Given that U.K. text-based traffic signs contain only two
typefaces (see Fig. 17), i.e., motorway and transport, the OCR
engine was retrained using only these typefaces [34]. Tesseract
was also trained on other symbols, which may appear to avoid
their misclassification as characters, e.g., an “airport” symbol
may be incorrectly classified as a letter “X.”

D. Temporal Fusing of OCR Results

To improve the accuracy of OCR, results are combined
across several frames. Individual words are compared from
frame to frame based on size, with word BBs normalized by
the region size. The results of the ten most recent detections
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Fig. 17. U.K. traffic sign typefaces, showing (top) transport typeface and
(bottom) motorway typeface.

TABLE IV
OCR RESULTS FOR INDIVIDUAL FRAMES AND FINAL RESULT

are combined. A histogram of OCR results is created for each
tracked word, with each word weighted by the recognition
confidence rate returned by the OCR. At each frame, the result
in the histogram of words, with the highest value, is taken to
be the word for that frame. If the word is only recognized in a
single frame, then it is ignored.

An example of our OCR result fusion method is shown in
Table IV, with text read from the traffic sign shown in Fig. 18.
It is worth noting in this example that, despite no single frame
producing a perfectly accurate OCR result, the fused result
is entirely correct. In addition to combining OCR results for
exactly matching words, fragments of words are also combined.
Occasionally, sections of words become temporarily unreadable
due to occlusion or blurring. This is overcome by attempting
to match together fragments of words, which overlap over
successive frames.

If two words are found to overlap and have a similar height
relative to the region size, an attempt is made to match the
two words together. The two word fragments are overlapped
iteratively, until a match is found between more than two
of the characters, whereupon a new word is created from a
combination of the existing words. An example of combined
words is shown in Fig. 19.

V. EXPERIMENTAL RESULTS

The proposed method currently runs at an average frame
rate of 14 frames/s, under Open Source Computer Vision
(OpenCV), on a 3.33-GHz Intel Core i5 CPU. A considerable
increase in speed was gained by running the algorithm in
parallel as a pipeline, although the system retains a latency of
around 140 ms. Example outputs of the algorithm are shown
in Fig. 20.

A. Comparative Analysis for the Detection Stage

To evaluate the performance of the detection stage of
our system, comparative analysis was performed against two

Fig. 18. Text on traffic sign associated with Table IV.

Fig. 19. Combination of word fragments, showing (top and middle) two word
fragments and (bottom) the resulting combination of those word fragments.

existing algorithms. These were the methods proposed by
Reina et al. [16] and González et al. [35]. Since both methods
were designed to recognize Spanish road signs, which are
blue and white, it was necessary to adapt the algorithms to
detect U.K. road signs, which also feature green and brown
backgrounds. The method of González et al. [35] detected blue
road signs as MSERs in the blue channel of a normalized red,
green, and blue (RGB) image. Therefore, to extend this to green
road signs, MSERs were also detected in the green channel.
Brown road signs were detected as dark-on-light MSERs in
a grayscale frame. The method of Reina et al. [16] uses hue,
saturation, and intensity (HSI) thresholding to find candidate
blobs for blue road signs. Therefore, additional thresholds were
added to their method for the detection of brown and green
road signs. These algorithms were optimized using the same
validation data set used to develop our proposed method.

These data comprised nine video sequences, with a total of
23 130 frames, at a resolution of 1920 × 1088 pixels. The
ground truth for detection was based on human observation;
therefore, distant or heavily blurred traffic signs, which were
unreadable by the eye, were ignored. The data set used for
testing was entirely separate from the validation set used for
the development and parameter tuning of the proposed and
implemented systems.

Regions were determined to be candidate traffic signs, if
detected for at least five subsequent frames. The results of this
comparison are shown in Table V, where values for Precision,
Recall, and Fmeasure were computed as

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

Fmeasure = 2 ∗ Precision ∗Recall

Precision+Recall
(9)

where TPs are correctly detected text-based traffic signs, FPs
are regions incorrectly identified as text-based traffic signs, and
false negatives (FNs) are text-based traffic signs that the system
failed to detect.
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Fig. 20. Example outputs of the algorithm.

TABLE V
RESULTS OF COMPARATIVE ANALYSIS FOR THE DETECTION STAGE

It can be seen from these results that the proposed method
achieves an Fmeasure of 0.93, whereas Reina et al. [16] and
González et al. [35] reach the considerably lower values of 0.61
and 0.60, respectively. The use of geometrical, contextual, and
temporal information in our system allows the total number of
FPs to be reduced, thus increasing its precision and Fmeasure.

Also included in Table V are results for our text-based traffic
sign detection method without the use of structural information.
As expected, the resulting increase in FPs causes a huge reduc-
tion in precision, whereas the recall stays the same. In addition
to reduced precision, the computational expense means that the
frame rate drops from 14 frames/s to 6 frames/s. This is due
to both the increased search area for candidate traffic signs and
the slow down created by the increased number of detected FPs
that it is necessary to process.

B. Performance of the Recognition Stage

To evaluate the performance of the recognition stage,
Precision, Recall, and Fmeasure were computed based on the
number of individual words correctly classified. For a word to
be considered a TP, all characters must be correctly recognized
in the correct letter case. If a single character is recognized
incorrectly, then the entire word is considered to be an FP.
Symbols such as “airport” were included in the training set
merely to avoid their misclassification as characters, and are

TABLE VI
RESULTS FOR THE RECOGNITION STAGE

therefore classified as true negatives (TNs) when recognized,
and have no effect on the result. There are 15 of these symbols
in total, examples of which include directional arrows and the
airport symbol.

We compare the results for OCR applied to a single instance
of each detected traffic sign when the region was largest and
most visible in the frame without any preprocessing, against
OCR after application of our perspective correction method
described in Section IV-A, OCR after application of our tempo-
ral fusion method described in Section IV-D, and then against
OCR after the application of both perspective correction and the
temporal fusion method. The results are presented in Table VI
and show that use of our perspective recovery and temporal
fusing methods vastly improve the recognition accuracy. It
can be seen that temporal fusing improves the precision but
not the recall; this is due to the rejection of low-confidence
words by the system. The total system performance, i.e., for
both detection and recognition stages, based on the number
of individual words recognized in all traffic signs, in all video
sequences, gave a precision value of 0.97, a recall value of 0.80,
and an Fmeasure value of 0.87.

VI. CONCLUSION

A novel system for the automatic detection and recognition
of text in traffic signs based on MSERs and HSV thresholding
has been proposed. The search area for traffic signs was reduced
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using structural information from the scene, which aided in
reducing the total number of FPs. Perspective rectification and
temporal fusion of candidate regions of text were used to
improve OCR results. Both the detection and recognition stages
of the system were validated through comparative analysis,
achieving the Fmeasure of 0.93 for detection, 0.89 for recog-
nition, and 0.87 for the entire system.
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